Thursday 15 February 2018

Movendo o código médio do filtro c


É possível implementar uma média móvel em C sem a necessidade de uma janela de amostras Ive descobri que eu posso otimizar um pouco, escolhendo um tamanho de janela thats um poder de dois para permitir bit-shifting em vez de dividir, mas não necessitando Um buffer seria bom. Existe uma maneira de expressar um novo resultado da média móvel apenas como uma função do antigo resultado e da nova amostra Definir um exemplo de média móvel, através de uma janela de 4 amostras para ser: Adicionar nova amostra e: Uma média móvel pode ser implementada recursivamente , Mas para um cálculo exato da média móvel você deve se lembrar da amostra de entrada mais antiga na soma (ou seja, o a no seu exemplo). Para um comprimento N média móvel você calcula: onde yn é o sinal de saída e xn é o sinal de entrada. Eq. (1) pode ser escrito recursivamente como Então você sempre precisa lembrar a amostra xn-N para calcular (2). Como indicado por Conrad Turner, você pode usar uma janela exponencial (infinitamente longa), que permite calcular a saída somente da saída anterior e da entrada atual: mas esta não é uma média móvel padrão (não ponderada), mas uma média exponencial Ponderada média móvel, onde as amostras mais no passado obter um peso menor, mas (pelo menos em teoria) você nunca esquecer nada (os pesos apenas ficar menor e menor para amostras no passado). Inicialize total 0, count0 (cada vez que vê um novo valor) Então uma entrada (scanf), uma add totalnewValue, um incremento (count), uma divide average (total / count) Esta seria uma média móvel sobre todas as entradas Para calcular a média Sobre apenas as 4 últimas entradas, exigiria 4 variáveis ​​de entrada, talvez copiando cada entrada para uma variável de entrada mais antiga, calculando a nova média móvel como a soma das 4 variáveis ​​de entrada, dividida por 4 (desvio para a direita 2 seria bom se todas as entradas fossem Positivo para fazer o cálculo médio Como outros já mencionaram, você deve considerar um filtro IIR (resposta de impulso infinito) em vez do filtro FIR (resposta de impulso finito) que você está usando agora. Há mais, mas à primeira vista os filtros FIR são implementados Como convoluções explícitas e filtros IIR com equações. O filtro IIR especial que eu uso muito em microcontroladores é um filtro passa-baixo de pólo único. Este é o equivalente digital de um simples filtro analógico RC. Para a maioria das aplicações, estes terão melhores características do que o Caixa que você está usando. A maioria dos usos de um filtro de caixa que eu encontrei são o resultado de alguém não prestar atenção na classe de processamento de sinal digital, e não como resultado de precisar de suas características particulares. Se você só quer atenuar as altas freqüências que você sabe que são ruído, um único pólo filtro passa-baixo é melhor. A melhor maneira de implementar um digitalmente em um microcontrolador é geralmente: FILT lt - FILT FF (NEW - FILT) FILT é um pedaço de estado persistente. Esta é a única variável persistente que você precisa para calcular este filtro. NEW é o novo valor que o filtro está sendo atualizado com esta iteração. FF é a fracção do filtro. Que ajusta o peso do filtro. Olhe para este algoritmo e veja que para FF 0 o filtro é infinitamente pesado desde a saída nunca muda. Para FF 1, seu realmente nenhum filtro em tudo desde que a saída apenas segue a entrada. Os valores úteis estão no meio. Em sistemas pequenos você escolhe FF para ser 1/2 N de modo que a multiplicação por FF possa ser realizada como um deslocamento para a direita por N bits. Por exemplo, FF pode ser 1/16 e multiplicar por FF, portanto, um deslocamento para a direita de 4 bits. Caso contrário, este filtro precisa apenas de uma subtração e uma adição, embora os números geralmente precisam ser mais largos do que o valor de entrada (mais na precisão numérica em uma seção separada abaixo). Eu costumo tomar leituras A / D significativamente mais rápido do que eles são necessários e aplicar dois desses filtros em cascata. Este é o equivalente digital de dois filtros R-C em série, e atenua por 12 dB / oitava acima da freqüência de rolloff. No entanto, para as leituras A / D é geralmente mais relevante olhar para o filtro no domínio do tempo, considerando sua resposta passo. Isso indica a rapidez com que seu sistema verá uma alteração quando a coisa que você está medindo muda. Para facilitar a concepção destes filtros (que significa apenas escolher FF e decidir quantos deles para cascatear), eu uso o meu programa FILTBITS. Você especifica o número de bits de deslocamento para cada FF na série de filtros em cascata e calcula a resposta da etapa e outros valores. Na verdade eu costumo correr isso através do meu script wrapper PLOTFILT. Isso executa FILTBITS, que faz um arquivo CSV, e depois traça o arquivo CSV. Por exemplo, aqui está o resultado de PLOTFILT 4 4: Os dois parâmetros para PLOTFILT significa que haverá dois filtros em cascata do tipo descrito acima. Os valores de 4 indicam o número de bits de mudança para realizar a multiplicação por FF. Os dois valores de FF são, portanto, 1/16 neste caso. O traço vermelho é a resposta da etapa da unidade, e é a coisa principal a olhar. Por exemplo, isto diz-lhe que se a entrada muda instantaneamente, a saída do filtro combinado estabelecerá a 90 do novo valor em 60 iterações. Se você se preocupa com 95 settling tempo, então você tem que esperar cerca de 73 iterações, e por 50 tempo de resolução apenas 26 iterações. O traço verde mostra a saída de um único pico de amplitude total. Isto dá-lhe alguma idéia da supressão de ruído aleatória. Parece que nenhuma amostra irá causar mais do que uma alteração de 2,5 na saída. O traço azul é dar uma sensação subjetiva do que este filtro faz com o ruído branco. Este não é um teste rigoroso, uma vez que não há garantia o que exatamente o conteúdo foi dos números aleatórios escolhidos como a entrada de ruído branco para esta execução de PLOTFILT. Seu somente para dar-lhe uma sensação áspera de quanto será squashed e de como liso é. PLOTFILT, talvez FILTBITS, e muitas outras coisas úteis, especialmente para o desenvolvimento de firmware PIC está disponível no software PIC Development Tools release na minha página de downloads de Software. Adicionado sobre precisão numérica eu vejo dos comentários e agora uma nova resposta que há interesse em discutir o número de bits necessários para implementar este filtro. Observe que a multiplicação por FF criará Log 2 (FF) novos bits abaixo do ponto binário. Em sistemas pequenos, FF é geralmente escolhido para ser 1/2 N para que este multiplicar é realmente realizado por um deslocamento à direita de N bits. FILT é geralmente um inteiro de ponto fixo. Observe que isso não altera nenhuma das matemáticas do ponto de vista dos processadores. Por exemplo, se você estiver filtrando leituras A / D de 10 bits e N 4 (FF 1/16), então você precisará de 4 bits de fração abaixo das leituras A / D inteiras de 10 bits. Um processadores mais, youd estar fazendo operações de 16 bits inteiro devido às leituras de 10 bit A / D. Neste caso, você ainda pode fazer exatamente as mesmas operações de 16 bits inteiros, mas comece com as leituras A / D esquerda deslocada por 4 bits. O processador não sabe a diferença e não precisa. Fazer a matemática em inteiros inteiros de 16 bits funciona se você os considera 12,4 pontos fixos ou inteiros verdadeiros de 16 bits (16,0 ponto fixo). Em geral, você precisa adicionar N bits cada pólo de filtro se você não quiser adicionar ruído devido à representação numérica. No exemplo acima, o segundo filtro de dois teria 1044 18 bits para não perder informações. Na prática em uma máquina de 8 bits que significa youd usar valores de 24 bits. Tecnicamente apenas o segundo pólo de dois precisaria do valor mais amplo, mas para a simplicidade do firmware eu costumo usar a mesma representação, e, portanto, o mesmo código, para todos os pólos de um filtro. Normalmente eu escrevo uma sub-rotina ou macro para executar uma operação de pólo de filtro, em seguida, aplicar isso a cada pólo. Se uma subrotina ou macro depende se os ciclos ou a memória do programa são mais importantes nesse projeto específico. De qualquer maneira, eu uso algum estado zero para passar NOVO para a subrotina / macro, que atualiza FILT, mas também carrega isso para o mesmo estado zero NOVO foi dentro Isso torna mais fácil para aplicar vários pólos desde o FILT atualizado de um pólo é O NOVO do próximo. Quando uma sub-rotina, é útil ter um ponteiro apontar para FILT no caminho, que é atualizado para logo após FILT na saída. Desta forma, a sub-rotina opera automaticamente em filtros consecutivos na memória se for chamada várias vezes. Com uma macro você não precisa de um ponteiro desde que você passa no endereço para operar em cada iteração. Exemplos de código Aqui está um exemplo de uma macro como descrito acima para um PIC 18: E aqui está uma macro semelhante para um PIC 24 ou dsPIC 30 ou 33: Ambos estes exemplos são implementados como macros usando o meu pré-processador de assembler PIC. Que é mais capaz do que qualquer um das instalações macro incorporadas. Clabacchio: Outra questão que eu deveria ter mencionado é a implementação de firmware. Você pode escrever uma sub-rotina de filtro passa-baixa de um único pólo uma vez, depois aplicá-la várias vezes. Na verdade eu costumo escrever tal sub-rotina para ter um ponteiro na memória para o estado do filtro, em seguida, tê-lo avançar o ponteiro para que ele pode ser chamado em sucessão facilmente para realizar filtros multi-polo. Ndash Olin Lathrop Apr 20 12 at 15:03 1. muito obrigado por suas respostas - todas elas. Eu decidi usar este filtro IIR, mas este filtro não é usado como um filtro LowPass padrão, uma vez que eu preciso para a média de valores de contador e compará-los para detectar alterações em um determinado intervalo. Uma vez que estes Valores van ser de dimensões muito diferentes, dependendo de hardware que eu queria tomar uma média, a fim de ser capaz de reagir a estas alterações Hardware específicas automaticamente. Ndash sensslen May 21 12 at 12:06 Se você pode viver com a restrição de um poder de dois números de itens para a média (ou seja, 2,4,8,16,32 etc), então a divisão pode ser feita de forma fácil e eficiente em um Micro de baixo desempenho sem divisão dedicada, pois pode ser feito como um deslocamento bit. Cada turno é um poder de dois, por exemplo: O OP pensou que ele tinha dois problemas, dividindo em um PIC16 e memória para seu buffer de anel. Esta resposta mostra que a divisão não é difícil. É verdade que ele não trata o problema da memória, mas o sistema SE permite respostas parciais, e os usuários podem tirar algo de cada resposta por si mesmos, ou mesmo editar e combinar outras respostas. Uma vez que algumas das outras respostas exigem uma operação de divisão, elas são igualmente incompletas, uma vez que não mostram como efetivamente conseguir isso em um PIC16. Ndash Martin Apr 20 12 at 13:01 Há uma resposta para um verdadeiro filtro de média móvel (aka boxcar filtro) com menos requisitos de memória, se você não mente downsampling. É chamado um filtro integrador-pente em cascata (CIC). A idéia é que você tem um integrador que você toma as diferenças de um período de tempo, eo dispositivo de economia de memória chave é que por downsampling, você não tem que armazenar cada valor do integrador. Ele pode ser implementado usando o seguinte pseudocódigo: Seu comprimento médio móvel efetivo é decimationFactorstatesize, mas você só precisa manter em torno de amostras statesize. Obviamente, você pode obter um melhor desempenho se o seu statesize e decimationFactor são poderes de 2, de modo que a divisão e os operadores restantes são substituídos por turnos e máscara-ands. Postscript: Eu concordo com Olin que você deve sempre considerar filtros IIR simples antes de um filtro de média móvel. Se você não precisa de freqüência-nulos de um filtro de vagão, um filtro de passa-baixa de 1 pólo ou de 2 pólos provavelmente funcionará bem. Por outro lado, se você estiver filtrando para fins de decimação (tomando uma alta taxa de amostragem de entrada e de média para o seu uso por um processo de baixa taxa), em seguida, um CIC filtro pode ser exatamente o que você está procurando. (Especialmente se você pode usar statesize1 e evitar o ringbuffer completamente com apenas um valor único integrador anterior) Theres alguma análise em profundidade da matemática por trás usando o filtro IIR de primeira ordem que Olin Lathrop já descreveu mais sobre a troca de pilha Digital Signal Processing (Inclui muitas imagens bonitas.) A equação para este filtro IIR é: Isso pode ser implementado usando apenas inteiros e nenhuma divisão usando o código a seguir (pode precisar de alguma depuração como eu estava digitando na memória.) Este filtro aproxima uma média móvel de Os últimos K amostras, definindo o valor de alfa para 1 / K. Faça isso no código anterior, definindo BITS para LOG2 (K), ou seja, para K 16 set BITS para 4, para K 4 set BITS para 2, etc (eu verificar o código listado aqui logo que eu recebo uma alteração e Editar esta resposta, se necessário.) Responder Jun 23 12 at 4:04 Heres um filtro passa-baixo de um único pólo (média móvel, com freqüência de corte CutoffFrequency). Muito simples, muito rápido, funciona muito bem, e quase nenhuma sobrecarga de memória. Nota: Todas as variáveis ​​têm escopo além da função de filtro, exceto o passado em newInput Nota: Este é um filtro de etapa única. Várias etapas podem ser conectadas em cascata para aumentar a nitidez do filtro. Se você usar mais de uma etapa, você terá que ajustar DecayFactor (como se relaciona com a Cutoff-Frequency) para compensar. E, obviamente, tudo o que você precisa é dessas duas linhas colocadas em qualquer lugar, eles não precisam de sua própria função. Este filtro tem um tempo de aceleração antes que a média móvel represente a do sinal de entrada. Se você precisar ignorar esse tempo de aceleração, basta inicializar MovingAverage para o primeiro valor de newInput em vez de 0 e esperar que o primeiro newInput não seja um outlier. (CutoffFrequency / SampleRate) tem um intervalo entre 0 e 0,5. DecayFactor é um valor entre 0 e 1, geralmente perto de 1. Flutuadores de precisão única são bons o suficiente para a maioria das coisas, eu só prefiro dobra. Se você precisar ficar com números inteiros, você pode converter DecayFactor e Amplitude Factor em inteiros fracionários, em que o numerador é armazenado como o inteiro, eo denominador é um número inteiro de 2 (assim você pode bit-shift para a direita como o Denominador em vez de ter que dividir durante o loop de filtro). Por exemplo, se você usar DecayFactor 0,99, e você quiser usar números inteiros, você pode definir DecayFactor 0,99 65536 64881. E então, sempre que você multiplicar por DecayFactor em seu loop de filtro, basta deslocar o resultado 16. Para obter mais informações sobre isso, um excelente livro thats Online, capítulo 19 sobre filtros recursivos: dspguide / ch19.htm PS Para o paradigma da média móvel, uma abordagem diferente para definir DecayFactor e AmplitudeFactor que pode ser mais relevante para suas necessidades, vamos dizer que você quer o anterior, cerca de 6 itens média juntos, fazê-lo discretamente, youd adicionar 6 itens e dividir por 6, então Você pode definir o AmplitudeFactor para 1/6 e DecayFactor para (1.0 - AmplitudeFactor). Respondeu May 14 12 at 22:55 Todo mundo tem comentado completamente sobre a utilidade de IIR vs FIR, e na divisão de poder-de-dois. Id gostaria de dar alguns detalhes de implementação. O abaixo funciona bem em pequenos microcontroladores sem FPU. Não há multiplicação, e se você manter N um poder de dois, toda a divisão é de ciclo único bit-shifting. Tampão de toque FIR básico: mantém um buffer de execução dos últimos N valores e uma Soma em execução de todos os valores no buffer. Cada vez que uma nova amostra entra, subtraia o valor mais antigo no buffer de SUM, substitua-o pela nova amostra, adicione a nova amostra à SUM e a saída SUM / N. Tampão de anel IIR modificado: mantenha uma SUM corrente dos últimos N valores. Cada vez que uma nova amostra chega, SUM - SUM / N, adicione a nova amostra e a saída SUM / N. Se I39m lendo você direito, você está descrevendo um filtro IIR de primeira ordem, o valor que você está subtraindo isn39t o valor mais antigo que está caindo, mas é, em vez disso, a média dos valores anteriores. Os filtros IIR de primeira ordem podem certamente ser úteis, mas não tenho certeza do que você quer dizer quando sugere que a saída é a mesma para todos os sinais periódicos. A uma taxa de amostragem de 10KHz, a alimentação de uma onda quadrada de 100Hz em um filtro de caixa de 20 estágios produzirá um sinal que sobe uniformemente para 20 amostras, senta alto para 30, cai uniformemente para 20 amostras e senta baixo para 30. Uma primeira ordem IIR. Ndash supercat Aug 28 13 às 15:31 vai produzir uma onda que começa bruscamente a subir e gradualmente nivela perto (mas não no) máximo de entrada, então começa bruscamente a cair e nivela gradualmente perto (mas não) o mínimo de entrada. Comportamento muito diferente. Uma questão é que uma média móvel simples pode ou não ser útil. Com um filtro IIR, você pode obter um bom filtro com relativamente poucos calcs. O FIR que você descreve só pode lhe dar um retângulo no tempo - um sinc em freq - e você não pode gerenciar os lobos laterais. Pode valer a pena jogar algumas multiplicações inteiras para torná-la uma simpática e simétrica sintonia FIR se você pode poupar os carrapatos do relógio. Ndash Scott Seidman Aug 29 13 às 13:50 ScottSeidman: Não há necessidade de multiplicar se um simplesmente tem cada estágio do FIR ou saída a média da entrada para esse estágio e seu valor armazenado anterior, e depois armazenar a entrada (se tiver O intervalo numérico, pode-se usar a soma em vez da média). Se isso é melhor do que um filtro de caixa depende da aplicação (a resposta de passo de um filtro de caixa com um atraso total de 1ms, por exemplo, terá um pico d2 / dt desagradável quando a mudança de entrada e novamente 1ms mais tarde, mas terá O mínimo possível d / dt para um filtro com um atraso total de 1 ms). Como disse mikeselectricstuff, se você realmente precisa reduzir suas necessidades de memória, e você não se importa sua resposta ao impulso é uma exponencial (em vez de um pulso retangular), eu iria para um filtro de média móvel exponencial . Eu uso-os extensivamente. Com esse tipo de filtro, você não precisa de nenhum buffer. Você não tem que armazenar N amostras passadas. Apenas um. Assim, seus requisitos de memória são cortados por um fator de N. Além disso, você não precisa de qualquer divisão para isso. Somente multiplicações. Se você tiver acesso a aritmética de ponto flutuante, use multiplicações de ponto flutuante. Caso contrário, faça multiplicações inteiras e desloque para a direita. No entanto, estamos em 2017, e eu recomendo que você use compiladores (e MCUs) que permitem que você trabalhe com números de ponto flutuante. Além de ser mais memória eficiente e mais rápido (você não tem que atualizar itens em qualquer buffer circular), eu diria que é também mais natural. Porque uma resposta de impulso exponencial corresponde melhor à maneira como a natureza se comporta, na maioria dos casos. Um problema com o filtro IIR como quase tocado por olin e supercat mas aparentemente desconsiderado por outros é que o arredondamento para baixo introduz alguma imprecisão (e potencialmente viés / truncamento). Assumindo que N é uma potência de dois, e apenas aritmética inteira é usada, o deslocamento direto sistematicamente elimina os LSBs da nova amostra. Isso significa que quanto tempo a série poderia ser, a média nunca vai levar esses em conta. Por exemplo, suponha uma série lentamente decrescente (8,8,8,8,7,7,7,7,6,6) e suponha que a média é realmente 8 no início. A amostra do punho 7 trará a média para 7, independentemente da intensidade do filtro. Apenas para uma amostra. Mesma história para 6, etc. Agora pense no oposto. A série sobe. A média ficará em 7 para sempre, até que a amostra seja grande o suficiente para fazer a mudança. Claro, você pode corrigir o viés adicionando 1 / 2N / 2, mas isso não vai realmente resolver o problema de precisão. Nesse caso a série decrescente permanecerá para sempre em 8 até que a amostra seja 8-1 / 2 (N / 2). Para N4, por exemplo, qualquer amostra acima de zero manterá a média inalterada. Acredito que uma solução para isso implicaria manter um acumulador dos LSBs perdidos. Mas eu não fui longe o suficiente para ter o código pronto, e não tenho certeza que não iria prejudicar o poder IIR em alguns outros casos de série (por exemplo, se 7,9,7,9 seria média para 8 então). Olin, sua cascata de dois estágios também precisaria de alguma explicação. Você quer dizer segurando dois valores médios com o resultado do primeiro alimentado para o segundo em cada iteração. Qual é o benefício desta média / média móvel simples Médias / média móvel simples Você é encorajado a resolver esta tarefa de acordo com a descrição da tarefa, usando qualquer idioma que você conheça. Calculando a média móvel simples de uma série de números. Criar uma função stateful / classe / instância que leva um período e retorna uma rotina que leva um número como argumento e retorna uma média móvel simples de seus argumentos até agora. Uma m�ia m�el simples �um m�odo para calcular uma m�ia de um fluxo de n�eros calculando apenas a m�ia dos �timos n�eros de 160 P 160 a partir do fluxo 160, em que 160 P 160 �conhecido como o per�do. Ele pode ser implementado chamando uma rotina de iniciação com 160 P 160 como argumento, 160 I (P), 160 que deve retornar uma rotina que, quando chamada com membros individuais, sucessivos de um fluxo de números, calcula a média de Para), os últimos 160 P 160 deles, vamos chamar este 160 SMA (). A palavra 160 estado 160 na descrição da tarefa refere-se à necessidade de 160 SMA () 160 lembrar determinadas informações entre as chamadas para ele: 160 O período, 160 P 160 Um recipiente ordenado de pelo menos os últimos 160 P 160 números de cada um dos Suas chamadas individuais. Stateful 160 também significa que chamadas sucessivas para 160 I (), 160 o inicializador, 160 devem retornar rotinas separadas que não 160 não compartilham o estado salvo para que possam ser usadas em dois fluxos de dados independentes. Pseudo-código para uma implementação de 160 SMA 160 é: Esta versão usa uma fila persistente para conter os valores p mais recentes. Cada função retornada de init-moving-average tem seu estado em um átomo contendo um valor de fila. Esta implementação usa uma lista circular para armazenar os números dentro da janela no início de cada ponteiro de iteração refere-se à célula de lista que mantém o valor apenas movendo para fora da janela e para ser substituído com o valor apenas adicionado. Usando um fechamento editar Atualmente este sma não pode ser nogc porque ele aloca um encerramento no heap. Alguma análise de escape pode remover a alocação de heap. Usando uma edição de estrutura Esta versão evita a alocação de heap do fechamento mantendo os dados no quadro de pilha da função principal. Mesmo resultado: Para evitar que as aproximações de ponto flutuante sigam se acumulando e crescendo, o código poderia executar uma soma periódica em toda a matriz de filas circulares. Esta implementação produz dois estados de compartilhamento de objetos (função). É idiomático em E separar a entrada da saída (ler a partir da escrita) em vez de combiná-los em um objeto. A estrutura é a mesma que a implementação do Desvio PadrãoE. O programa elixir abaixo gera uma função anônima com um período embutido p, que é usado como o período da média móvel simples. A função de execução lê entrada numérica e passa para a função anônima recém-criada e, em seguida, inspeciona o resultado para STDOUT. A saída é mostrada abaixo, com a média, seguida pela entrada agrupada, formando a base de cada média móvel. Erlang tem fechamentos, mas variáveis ​​imutáveis. Uma solução então é usar processos e uma simples mensagem passando API baseada. As linguagens de matriz têm rotinas para calcular os avarages deslizando para uma determinada seqüência de itens. É menos eficiente para loop como nos comandos a seguir. Solicita continuamente uma entrada I. Que é adicionado ao final de uma lista L1. L1 pode ser encontrado pressionando 2ND / 1, e a média pode ser encontrada em List / OPS Pressione ON para terminar o programa. Função que retorna uma lista contendo os dados médios do argumento fornecido Programa que retorna um valor simples em cada invocação: list é a média da lista: p é o período: 5 retorna a lista média: Exemplo 2: Usando o programa movinav2 (i , 5) - Inicializando o cálculo da média móvel e definindo o período de 5 movinav2 (3, x): x - novos dados na lista (valor 3), e o resultado será armazenado na variável x e exibido movinav2 (4, x) : X - novos dados (valor 4), eo novo resultado será armazenado na variável x, e exibido (43) / 2. Descrição da função movinavg: variável r - é o resultado (a lista média) que será retornada variável i - é a variável de índice, e aponta para o fim da sub-lista a lista sendo calculada a média. Variável z - uma variável auxiliar A função usa a variável i para determinar quais valores da lista serão considerados no cálculo da média seguinte. Em cada iteração, a variável i aponta para o último valor na lista que será utilizado no cálculo médio. Portanto, só precisamos descobrir qual será o primeiro valor na lista. Geralmente bem tem que considerar p elementos, então o primeiro elemento será o indexado por (i-p1). No entanto, nas primeiras iterações, esse cálculo será normalmente negativo, de modo que a seguinte equação evitará índices negativos: max (i-p1,1) ou, arranjar a equação, max (i-p, 0) 1. Mas o número de elementos nas primeiras iterações também será menor, o valor correto será (índice final - índice de início 1) ou, arranjar a equação, (i - (max (ip, 0) 1) e então , (I-max (ip, 0)). A variável z detém o valor comum (max (ip), 0) então o beginindex será (z1) e os numberofelements serão (iz) mid (list, z1, iz) retornará a lista de valor que será a soma média .) Irá somá-los soma (.) / (Iz) ri irá média deles e armazenar o resultado no lugar apropriado na lista de resultados Usando um fecho e criando uma funçãoFreqüência Resposta do Filtro Média Corrente A resposta em frequência de um sistema LTI é O DTFT da resposta de impulso, A resposta de impulso de uma L-amostra média móvel é Como o filtro de média móvel é FIR, a resposta de freqüência reduz à soma finita Podemos usar a identidade muito útil para escrever a resposta de freqüência como onde temos Deixe ae menos jomega. N 0 e M L menos 1. Podemos estar interessados ​​na magnitude desta função para determinar quais freqüências passam pelo filtro sem atenuação e quais são atenuadas. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianos por amostra. Observe que, em todos os três casos, a resposta de freqüência tem uma característica de passagem baixa. Uma componente constante (frequência zero) na entrada passa através do filtro sem ser atenuada. Certas frequências mais elevadas, como pi / 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro lowpass, então não temos feito muito bem. Algumas das frequências mais altas são atenuadas apenas por um factor de cerca de 1/10 (para a média móvel de 16 pontos) ou 1/3 (para a média móvel de quatro pontos). Podemos fazer muito melhor do que isso. O gráfico acima foi criado pelo seguinte código de Matlab: omega 0: pi / 400: pi H4 (1/4) (1-exp (-iomega4)) ./ (1-exp (-iomega)) H8 (1/8 ) (1-exp (-iomega8)) ./ (1-exp (-iomega)) lote (omega Uma das principais aplicações para a placa Arduino é a leitura e o registro de dados de sensores (veja a Figura 1). . Por exemplo, um monitora a pressão a cada segundo do dia. Como altas taxas de amostragem geralmente gera picos nos gráficos, também se deseja ter uma média das medições. Como as medições não são estáticas no tempo o que muitas vezes precisamos é de uma média de corrida. Esta é a média de um determinado período e muito valioso quando se faz análise de tendências. A forma mais simples de uma média em execução pode ser feita por um código que se baseia na média anterior: Se não se deseja usar matemática em ponto flutuante - como isso ocupa a memória e diminui a velocidade - pode-se fazer o mesmo completamente no domínio inteiro. A divisão por 256 no código de exemplo é um deslocamento-direito 8, que é mais rápido do que digamos divisão por, e. 100. Isso é verdade para cada poder de 2 como divisor e um só deve ter cuidado a soma dos pesos é igual ao poder de 2. E, claro, deve-se tomar cuidado não há transbordamento intermediário (considere usar unsigned longo) Se você precisar Uma média de execução mais precisa, in concreto das últimas 10 medições, você precisa de uma matriz (ou lista vinculada) para mantê-los. Esta matriz age como um buffer circular e com cada nova medição a mais antiga é removida. A média de execução é calculada como a soma de todos os elementos divididos pelo número de elementos na matriz. O código para a média em execução será algo como isto: Desvantagem deste código é que a matriz para armazenar todos os valores pode se tornar bastante grande. Se você tem uma medição por segundo e você quer uma média de execução por minuto que você precisa de uma matriz de 60 uma média por hora precisaria de uma matriz de 3600. Isso não poderia ser feito desta maneira em um Arduino como ele só tem 2K de RAM. No entanto, através da construção de uma média de 2 estágios que pode ser abordado muito bem (renúncia: não para todas as medições). No código psuedo: Como uma nova matriz estática interna é necessária para cada função runningAverage, este grita para ser implementado como uma classe. Biblioteca RunningAverage A biblioteca runningAverage cria uma classe da função acima para que ela possa ser usada várias vezes em um sketch. Desacopla a função add () e avg () para ser um pouco mais flexível, e. Um pode chamar a média várias vezes sem adicionar uma coisa. Observe que cada instância da classe adiciona sua própria matriz para realizar medições e que isso adiciona até o uso de memória. A interface da classe é mantida o menor possível. Nota: com a versão 0.2 os nomes dos métodos são todos mais descritivos. Uso Um pequeno esboço mostra como ele pode ser usado. Um gerador aleatório é usado para imitar um sensor. Em setup () o myRA é limpo para que possamos começar a adicionar novos dados. Em loop () primeiro um número aleatório é gerado e convertido em um flutuador a ser adicionado ao myRA. Em seguida, o runningAverage é impresso para a porta serial. Pode-se também exibi-lo em algum LCD ou enviar mais ethernet etc Quando 300 itens são adicionados myRA é limpo para começar de novo. Notas Para utilizar a biblioteca, crie uma pasta no SKETCHBOOKPATHlibaries com o nome RunningAverage e coloque o. h e. cpp lá. Opcionalmente, faça um subdiretório de exemplos para colocar o aplicativo de exemplo. Histórico 2017-01-30: versão inicial 2017-02-28: fixa destrutor em falta no arquivo. h 2017-02-28: construtor padrão removido 2017--. Adicionado fillValue () refactored para publicação 2017-07-03: adicionado código de proteção de memória - se matriz interna não pode ser alocada tamanho Torna-se 0. Isso é para resolver o problema descrito aqui - forum. arduino. cc/indextopic50473.msg1790086msg1790086 - Todo Test extensivamente. Classe de modelo RunningAverage. h RunningAverage. cpp

No comments:

Post a Comment